
 
Application of HLA to Distributed Virtual Ship 

Combat Information Center Training 
 

Suleyman Guleyupoglu 
Patrick Melody 

ITT Industries, Inc. 
2560 Huntington Avenue 
Alexandria, VA 22303 

202-767-8023, 202-767-3879 
suleyman@ait.nrl.navy.mil, melody@ait.nrl.navy.mil 

 
Henry Ng 

U.S. Naval Research Laboratory 
4555 Overlook Avenue, SW 

Washington, DC 20375 
202-767-6023 

ng@ait.nrl.navy.mil 
 

 
Keywords: 

HLA, RTI, Ownership Management, CIC, Distributed Simulation, Performance, Virtual Reality, Training.  
 
 
ABSTRACT: The High Level Architecture (HLA) and its software implementation Runtime Infrastructure (RTI) are 
developed by Defense Modeling and Simulation Office (DMSO) to provide a common framework for disparate 
simulations to communicate with one another. This paper presents lessons learned from making one of the U.S. 
Navy distributed simulations comply with HLA. 
 
Virtual ship combat information center, or Virtual CIC, is a virtual reality application developed as a cost-effective 
means of training crew members at Navy surface combatant training facilities. Real combat system consoles are 
used for crew training in these facilities. Due to the high cost of acquiring, reconfiguring and maintaining these 
consoles, there is a limited number of consoles available to the students. With the advent of cheaper and more 
powerful graphics computers, virtual reality is an economical and viable training alternative. An added benefit of 
the Virtual CIC is the ability to conduct training in a distributed environment where students and the instructor can 
be at different geographical locations but interact with each other in the same virtual ship or CIC. Virtual CIC was 
developed to use User Datagram Protocol (UDP) to communicate between each participant. In order to comply with 
the Department of Defense  (DoD) mandate, Virtual CIC was upgraded to use RTI. 
 
RTI Version 1.3R6 provided by DMSO was used in the upgrade of Virtual CIC. RTI ownership management services 
are utilized to manage access to common resources in order to maintain a consistent tactical picture among 
crewmembers in a distributed training session. A number of observations were made during the implementation and 
testing of the system. This paper presents those observations in some detail. 
 
1. Introduction 

The High Level Architecture (HLA) for Modeling and 
Simulation (M&S) is a network communication 
architecture designed to provide a mechanism for 
heterogeneous simulations to coordinate their run-time 
execution [1]. The creation of coordinated executions 
is designed to save money by allowing specialized 

resources (e.g. airplane simulators, custom computer 
hardware, live platform interfaces) to be shared by 
multiple programs. However, because the HLA has 
only recently been developed as the DoD Distributed 
Simulation standard, information on the applicability 
of this standard to Navy M&S problems should be 
tested in real-world applications.  
 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2010 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2010 to 00-00-2010  

4. TITLE AND SUBTITLE 
Application of HLA to Distributed Virtual Ship Combat Information
Center Training 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
ITT Industries, Inc,2560 Huntington Avenue,Alexandria,VA,20375 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



This paper presents performance characteristics of the 
HLA Run-Time Infrastructure (RTI) in supporting a 
Navy application. RTI is the backbone of the High 
Level Architecture, through which information is 
passed from one system to another. The RTI has 
components intended to support widely disparate 
simulation systems.  
 
Simulations subscribe to the RTI for specific services 
and likewise announce their intent to publish specific 
types of information. Thus, simulations become clients 
for some types of information or servers of 
information or both. This “client/server paradigm” is a 
radical departure from the structure of DIS-based 
simulation systems and will have an impact on the 
simulations using the paradigm. 
 
It is not clear how the RTI will actually perform in the 
presence of multiple services contending for available 
communications bandwidth. Naval system simulations 
will require dynamic information that is likely to be 
available only from powerful, dedicated server 
systems. Examples include environmental services 
such as volumetric atmospheric and oceanic data, long 
range or shallow water acoustic computations, electro-
optic sensor computations, voice and digital 
communications network performance, and complex 
Command and Control and Decision Support systems. 
 
In order to evaluate the performance characteristics of 
RTI, an existing simulation was upgraded to use RTI. 
The application is a  virtual reality application that 
simulates a ship Combat Information Center (CIC). In 
this application the events will have to be 
communicated to each participant with minimum 
latency and the tactical picture consistency must be 
maintained. RTI’s ownership management services 
play a vital role for achieving this goal and should be 
performed by RTI effectively. Therefore this 
application was used to evaluate RTI capabilities in 
supporting real time applications as well as ownership 
handoff performance. We describe the Virtual CIC 
application in the next section. 
 
2. Virtual CIC 

As the US defense budget decreases, the US Navy 
training community is more cost conscious than ever. 
In current US shore-based surface combatant training 
facilities new crews are trained using real combat 
consoles in a classroom environment. This has the 
considerable expense of supporting, maintaining, and 
reconfiguring the consoles used in these facilities. In 

addition, there are a limited number of training 
consoles available, limiting time available to each 
student to use.  
 
Virtual reality technology has become a cost-effective 
training solution with the advent of more powerful and 
cheaper graphics computers. This technology allows 
the user to be immersed into a simulated graphical 
environment where he or she sees the virtual 
environment through a computer monitor or a head 
mounted display and provides input through various 
devices such as a keyboard, mouse or more 
sophisticated alternatives. We coupled virtual reality 
and distributed simulation technology to develop a 
distributed virtual ship Combat Information Center 
(CIC) for the surface ship training. The goal is to 
create a distributed immersive learning environment to 
complement current training capability with reduced 
maintenance cost and higher availability. CIC 
crewmembers can then perform team learning and 
training in a virtual ship environment. The virtual 
environment offers a true interactive 3D view of the 
interior of the CIC as shown in Figure 2.1. The visual 
simulation portion of the Virtual CIC is intended to 
provide the “look and feel” of the actual CIC through 
the use of extensive 3D models, phototextures, and 
sound clips. Virtual environments create a new level of 
training by making the training experience “realistic” 
instead of a classroom-like environment. It also 
simulates the equipment that the crew interacts with to 
perform detection, classification and target 
engagement activities. Each student appears in the 
environment as a 3D human representation, an avatar. 
A picture of each student’s face is scanned and 
mapped onto his avatar with the 3D texture mapping 
technique so that each student can recognize the others 
inside the Virtual CIC. The Virtual CIC’s networking 
capability allows students at different geographical 
locations to train together in a unified virtual 
environment over a wide area network. This 
networking capability not only allows the crews in the 
same ship CIC to be distributed at different locations 
for training, it also provides the capability to simulate 
the whole virtual battle group operations (multiple 
ships) as shown in Figure 2.2.  
 
 



 
Figure 2.1: Virtual Ship Combat Information Center  

 

 
Figure 2.2: Virtual Battle Group  

 

 
Figure 2.3: Holocube Visualization Aid  

 
Various information visualization aids were 
incorporated into the virtual environment to help 
students in learning different tactical deployment of 
the combat systems. For example, we have created a 
“holocube” that allows the student to visualize the 

entire battlespace as shown in Figure 2.3 . This allows 
students to correlate sensor data with a visual 3D 
display of a god’s-eye view, facilitating understanding 
of sensor capabilities and operations. This 
holographic -like display could also allow for 
visualization of sensor coverage, emission restrictions, 
operational boundaries and other doctrinal concepts 
and entities. As the student changes his watchstation 
console mode the holocube view could change to 
reflect the performance of that mode. This visual 
augmentation can assist teaching tactical deployment 
of offensive and defensive capabilities to incoming 
sailors. A multimedia hypertext tutorial is integrated 
into the virtual world detail ing information about 
console operations, responsibilities, and workflow of 
watchstations in the CIC. The Virtual CIC application 
can be run in a variety of display and input 
configurations, including a simple single monitor with 
mouse and keyboard input for individual training, 
stereoscopic large multi -screen panoramic displays for 
group viewing or playback, and stereoscopic head 
mounted displays with hand and body movement 
tracking devices for fully immersive team training in 
order to meet different train ing needs. 
 
Virtual consoles are easily reconfigured or rearranged 
as needed for different ship configurations for 
maximum efficiency. By combining the virtual 
environment with a ship simulation model, operational 
procedures under various tactical scenario s can be 
explored and refined easily. System performance can 
be stressed in a realistic scenario without the risking 
accidents or tying up the real operational hardware. 
Incorporated information visualization aids allowed 
students to learn and understand t he operations much 
faster than in a regular classroom environment. 
Virtual reality based training also allows students to 
train with advanced systems before the hardware has 
been built, or try out new physical layouts that do not 
currently exist, as well as experiment with and develop 
new operational procedures. The system described can 
be applied to land-based or mobile command centers 
as well as the ship CIC. Also, it is not limited to 
training applications. Currently, we are extending the 
system for conducting virtual prototyping (i.e., design 
and develop new systems in a virtual environment 
before building the real physical system).  
 
3. Virtual CIC with RTI 

This section presents the software development 
process and the test procedure used in embedding RTI 
v.1.3r6 into Virtual CIC. Prior to any development, 



the test team contacted and collaborated with 
personnel from the Joint Advanced Distributed 
Simulation (JADS) Joint Test & Evaluation (JT&S) 
Office and benefited from their experience [2]. JADS 
group has developed several HLA test software tools 
for their work including tools to log RTI activity that 
was applicable to this study also. The complete line of 
software tools can be downloaded from the JADS 
World Wide Web site [3]. Following sections present 
the experiences in adapting RTI version 1.3r6 as the 
network communication tool for the Virtual CIC.  
 
3.1 Design the FOM and SOM 

Network communication requirements were relatively 
clear from the existing implementation of the Virtual 
CIC. The Virtual CIC communication was based on 
passing data between CICs using generic strings, 
which were then parsed by each application and 
interpreted appropriately. This communication scheme 
could be very easily replaced by RTI interactions 
where the string would be passed as the parameter to 
an interaction. This, however, would make Virtual 
CIC federation a closed system. Another application 
would not be able decipher the meaning of those 
strings without access to Virtual CIC source code or 
specifications of the message strings.  
 
Therefore, it was more desirable to design the 
Federation Object Model (FOM) and Simulation 
Object Model (SOM) with the idea that a foreign, yet 
non-existent, system would want to participate in the 
Virtual CIC environment, publish and subscribe d ata 
as appropriate. To that end, the events in the Virtual 
CIC are defined as appropriate RTI interactions, e.g. 
touch, move.  
 
3.2 RTI-Virtual CIC Interface 

Virtual CIC application is written using a well -
structured, object-oriented VR Framework. A 
framework is a library of classes that embodies an 
object-oriented abstract design to solve a set of similar 
problems. Libraries typically provide algorithms, e.g. 
trigonometric functions in the math libraries. 
Frameworks, on the other hand, provide or sometimes 
enforce structure to an application in addition to 
algorithms. The VR Framework provides classes that 
handle communication between framework 
applications. These classes use events internally and 
hide the implementation of  that protocol from the VR 
developer. Similarly, classes that use RTI as the 
communication protocol had to be added to the VR 
Framework. Then, Virtual CIC would require minimal 

changes to take of advantage of these new capabilities. 
System design was carried out with this vision.  
 
The basic design of the system is such that there is a 
single external data distribution manager object for 
using the RTI services from the Virtual CIC. This is 
illustrated in Figure  3.1 with a Unified Modeling 
Language (UML) class diagram [4].  
 
The blocks in UML diagrams represent classes with 
class names written in the top section of the block. 
When the name is printed in Italics, the class is said to 
be abstract. Abstract classes typically define interfaces. 
The lines connecting classes identify associations and 
the label on the line is the name of the association. 
The labels next to the class names, if they exist, 
identify the role of the class in the association.  
 
ExtDataDistMgr is the only class Virtual CIC  knows 
and deals with to communicate with the rest of the 
world whether that is another Virtual CIC program or 
any federate using the same Federation Object Model 
(FOM). Conversely, ExtDataDistMgr only knows of 
one instance of the CicCallback class— a class derived 
from CicCallback to be perfectly accurate since 
abstract classes can not be instantiated. The numbers 
“1” at both ends of the association indicate that the 
relation is one-to-one. A more detailed description of 
the interface design is shown in Fig ure 3.2, including 
the methods defined by the interface classes. 
 

 
Figure 3.1: UML class diagram for the VCIC interface  
 



 
Figure 3.2: Class diagram for the Virtual CIC RTI 

module 
 
3.3 Network Architecture 

In order to isolate the computers from excess net work 
traffic that may alter the results, they are placed in a 
separate, stand-alone network. The network 
architecture used in the testing is shown in Figure  3.3 
along with the computers used in testing. The gray -
shaded computers were not used in the testin g as they 
were not capable of running the Virtual CIC 
application but they are shown in the diagram for 
completeness. The numbers printed above the 
connections in the diagram represent whether the 
connection is active or not. This notation is used to 
avoid duplicating the image several times. The 
numbers indicate when the connection would be live 
with respect to the number of federates participating in 
the federation. For example, when a federation with 
two federates is being tested, Seahawk and Falcon 
would be connected to the hub and there would be no 
other connection to the hub. Similarly, when three 
federates are being tested connections labeled “2+” 
and “3+” would be active, creating a standalone 
network of three computers connected through a 
10BaseT hub. In the case of seven or more federates 
participating in the federation, the network becomes 
connected to the rest of the LAN and Internet but the 
effect of this proved to be negligible. 
 
Clearly, performance resul ts that we would measure 
during testing would depend on computer hardware 
characteristics, among other things. In other words, 
the faster the computer, the faster the RTI performance 
will be. This is because RTI is a software component 
that shares the resources of the host computer. In 

addition, the faster the computer can accomplish its 
simulation tasks, the faster or the more frequently it 
can give RTI a chance to perform the necessary tasks. 
Because of this consideration, it was desirable to use 
identical or very similar computers in the federation. 
Therefore, first four federates ran on identical 
hardware. Later, faster computers were also added to 
the federation. Virtual CIC is a virtual reality 
application that requires high -performance computers 
that provide high frame rate to give the user a realistic 
immersive environment. Therefore, any computer less 
powerful than an SGI Indigo2 was not used in the 
testing. 
 

Seahawk

Falcon

Blackhawk

Stennis

America

Hopper

10BaseT Hub

Ramage

Vinson

Cabletron
SmartSwitch 2200

Cabletron
SmartSwitch 6000

Internet

Monsoon

Midway

Kidd

Hobbes

AIT LAN

2+

2+

3+

4+

5+

6+

7+2+

 

Figure 3.3: Test network configuration  
 
3.4 RTI Interface Module 

Virtual CIC simulations run in a distributed 
environment where multiple crewmembers (users) 
share the same virtual environment. It is important to 
maintain a consistent view of the virtual environment 
not to confuse the users. For example, if two 
crewmembers press the same button at the same time 
to turn the radar on, they may see that the radar did 
not come on at all. This is because there was two 
button push events generated, and the first turned the 
radar on, the second turned it off. To avoid this  kind of 
behavior, resources can be allocated to particular users 
at particular times. Before pushing a button, the 
software (transparent to the user) requests ownership 
of that button from the federation. If the federation 
grants the ownership, the user w ould be allowed to 
push that button. Otherwise, it would get audio or 



visual feedback that he or she is not allowed to push 
that button. This way, two crewmembers could not 
push the same button at the same time. Therefore, 
seamless exchange of ownership from federate to 
federate (or user to user) makes the Virtual CIC more 
user friendly. It was desirable to achieve the ownership 
exchange under 500 milliseconds to make the Virtual 
CIC experience more pleasant.  
 
RTI provides three mechanisms to exchange 
ownership between federates [5]. These three 
mechanisms are shown as a UML sequence diagram in 
Figures 3.4–3.6. In these diagrams, RTI represent the 
RTI services offered by the Local RTI Component 
(LRC) and the Green or Yellow federate is any generic 
federate using these services. 
 

 
Figure 3.4: Ownership Pull (intrusive)  
 

 
Figure 3.5. Ownership Push  

 

 
Figure 3.6: Ownership Pull (orphaned attributes)  

 
The first scheme shown in Figure 3.4 involves green 
federate asking ownership of one or more attributes of 
an object from RTI. RTI, in turn, will call one of 
yellow federate’s callback functions (assuming that the 
yellow federate owns those attributes in this example). 
Yellow federate then lets RTI know which of those 
attributes it is willing to give up. Then, R TI informs 
the green federate about for which attributes it has 
received the ownership. This scheme is very close to 
what was needed for Virtual CIC application. 
However, RTI implementation is limited in that if the 
yellow federate is not willing to give u p ownership on 
any of the requested attributes, it has no way of 
informing the green federate of its decision. We tried 
using the attributeOwnershipReleaseResponse 
function with an empty list of attributes, which 
normally would contain the list of attri butes the yellow 
federate was giving up, but that call had no effect. In 
other words, it did not cause RTI to call the green 
federate’s callback function attributeOwnership-
AcquisitionNotification with an empty list of 
attributes. This is because RTI im plementation 
“optimized out” the call, i.e. ignored it assuming that 
it has no consequence. This behavior was classified as 
normal or expected by the RTI Help Desk. The 
consequence of all of this is that green federate is 
never going to receive feedback about the request it 
made when yellow federate decides not to release any 
of the attributes. RTI developers asserted that this is in 
line with the HLA Interface Specification (I/F Spec) 
[6]. This assertion may be debated however as the I/F 
Spec is wide open for interpretation on this issue:  
 

“The AttributeOwnershipReleaseResponse service 
shall notify the RTI that the federate is willing to 
release ownership of the specified instance attributes 
for the specified object instance. The federate shall 
use this service to provide an answer to the question 



posed as a result of the RTI invocation of Request-
AttributeOwnershipRelease. The returned argument 
shall indicate the instance attributes for which 
ownership was actually released. Completing of the 
invocation of this service shall be viewed as an 
implied AttributeOwnershipDivestitureNotification 
invocation for all of the instance attributes in the 
returned argument.”                                  

— HLA Interface Specification 
 
As underlined above (not unde rlined in the original 
document), the I/F Spec requires that the attribute-
OwnershipReleaseResponse shall be used to respond 
to ownership requests. However, in the current 
implementation of the RTI this service can not be used 
to answer the request when the answer is “I do not 
want to give up the ownership of any of the requested 
attributes.”  Therefore according to this interpretation 
it can be argued that RTI does not perform as 
prescribed by the I/F Spec. 
 
One way to get around this deficiency in the RTI 
behavior is to implement a time -out procedure. If a 
federate does not hear a response to its ownership 
request within a “reasonable” amount of time, it 
should assume that the request was denied. This time -
out threshold depends on what kind of latency i s 
expected in the network. It can be calculated by adding 
the maximum expected delay between two nodes and 
an additional duration to account for unusual behavior 
on the network. For Virtual CIC, this time -out value is 
set to 500 milliseconds, as this was our maximum 
response time requirement.  
  
The other two ownership exchange schemes that were 
not needed in Virtual CIC but could be used in other 
applications are shown in Figures 3.5 and  3.6. Figure 
3.5 shows how a federate can divest its ownership of 
one or more attributes. (There is also an unconditional 
divestiture method that is very similar to what’s shown 
in the figure.)  Figure 3.6 illustrates the procedure to 
retrieve ownership for attributes that are available. 
These attributes may be ones that were released by 
previous federates without properly transferring the 
ownership to another federate. In such cases, RTI 
maintains the ownership for the attributes.  
 
One desirable but missing functionality identified in 
the RTI was the capability to request ownership for the 
object as a whole instead of a set of its attributes. 
Owning an object as a whole can be considered 
owning all its attributes. As such, requesting all the 
attributes of an object is the same as requesting the 
ownership for the object and RTI provides this 

functionality. This works well when only one federate 
requests ownership of all the attributes at any given 
time. However, if two or more federates request 
ownership of all the attributes of an object at about the 
same time, each federate may get a subset only. In 
other words, there is a chance none of the federates 
will own the object as a whole. This issue is also 
addressed by Kuijpers, et al [7]. In Virtual CIC 
application, this “fight for all attributes” was avoided 
by choosing one attribute to represent ownership of an 
object in the federation. This could be an attribute 
defined in the FOM for this purpose specifically. 
Instead, it was decided to use the privilegeToDelete 
attribute already defined for all attributes by the RTI.  
  
3.5  Ownership Exchange Performance Test Results 

Initially, the testing involved two identical SGI 
Indigo2 computers.  The participants walked over to a 
console in the virtual world and pressed each button 
and saw the effect.  If the other person owned the 
button at the time, nothing happened.  Otherwise, the 
radar may have been turned on, or the scale on the 
radar screen may have been changed depending on 
what button was pushed.  During this process, it was 
observed whether there was a consistent picture for 
both participants.  In other words, if the radar 
appeared on for one user, it was on for the other also.  
Maintaining tactical picture consistency was one of the 
requirements and RTI fulfilled this requirement using 
reliable communication mode.  
 
It was expected that as the number of federates 
increase, the ownership request response time would 
increase.  To some extent, this prediction was true as 
shown in Figure  3.7. The figure shows a scatter plot of 
ownership exchange response time where the legend 
shows the name of the computer where the federate 
was running.  Ownership exchange response time here 
is defined as the time from the point the user pushes a 
button and causes an ownership request to the time he 
or she gets a response from the federation.  
Considering the fact that RTI is single -threaded, in 
other words, does not function while program control 
is not explicitly given to it, the response time includes 
not only the RTI performance but also the Virtual CIC 
performance characteristics such as rendering speed.  
In fact, this is what makes measured response times 
depend on the computer platform.   
 
Since RTI does not run as a separate thread in an 
application, it has to be given CPU cycles as frequently 
as the data must be exchanged.  This is achieved by 
calling the RTI tick() function.  Virtual CIC gave RTI 



ample opportunity to perform its tasks by calling the 
tick function between rendering of each frame so that 
communication between the federates would not be 
hindered.  
 
Figure 3.8 shows the average response time for 
ownership requests as the number of federates in the 
federation increase.  The first four federates that 
participated on this testing procedure was running on 
four identical SGI Indogo2 computers with Maximum 
Impact graphics board and a 250 M Hz IP22 processor 
(Seahawk, Falcon, Blackhawk and Stennis in Figure 
3.7).  The fifth federate ran on another SGI Indogo2 
computer with a High Impact graphics board and a 
195 MHz IP28 processor (America in Figure 3.7).  The 
next three additions to the feder ation were even faster 
computers, which explains the reduction in average 
response time. Table 3.1 shows a summary of the 
computer hardware used in testing.  
 

 

Figure 3.7: Ownership exchange response times  
 

 
Figure 3.8: Average ownership exchange response 

time 
 

Table 3.1: SGI hardware that was used to run Virtual 
CIC 

Computer 
Name 

SGI 
Model 

Number and 
type of 

Processor 
(CPU) 

Graphics 
board 

Memory 
(Mbyte) 

Network 
Interface 

Seahawk Indigo2 1 x 250MHz 
MIPS R4400 

Maximim 
Impact 256 Ethernet 

Falcon Indigo2 1 x 250MHz 
MIPS R4400 

Maximum 
Impact 256 Ethernet 

Blackhawk Indigo2 1 x 250MHz 
MIPS R4400 

Maximum 
Impact 256 Ethernet 

Stennis  Indigo2 1 x 250MHz 
MIPS R4400 

Maximum 
Impact 256 Ethernet 

America Indigo2 1 x 195MHz 
MIPS R10000 

High 
Impact 256 Ethernet 

Hopper Octane 2 x 195MHz 
MIPS R10000 MXI 128 Fast 

Ethernet 

Ramage Octane 1 x 195MHz 
MIPS R10000 MXI 256 Fast 

Ethernet 

Vinson  Onyx 4 x 194MHz 
MIPS R10000 

Infinite-
Reality 512 Ethernet 

 

The performance on a WAN is also measured.  
Assuming that two federates are spread across the 
country, the additional time required to transfer data 
back and forth is approximately 60 milliseconds.  (For 
example, roundtrip transfer of 50 -to-1000 bytes of data 
between Washington, D.C. and Mountain View, CA 
takes 60-to-65 milliseconds.)  To achieve the effect of 
a cross-country WAN between two federates, they are 
connected through two routers and a 30 -milli second 
delay is introduced to each packet during the 
transmission between the routers.  With this 
configuration, the average response time was 
measured as 270 milliseconds.  This is acceptable as it 
is well below our 500-millisecond acceptable limit.  
The only concern though, is that the RTI's failure to 
provide negative feedback on ownership requests.  
When running a federation on a WAN, the time -out 
technique described earlier may be hazardous as some 
requests can take too long to be responded as the 
network temporarily becomes unavailable, which is 
certainly more likely on a WAN than a LAN.  
Therefore time-out period would have to be kept long.  
This period may have to be too long to account for low 
quality connections, and may deem running of the 
federation on a WAN impractical.  
 
4. Discussions 

The performance levels obtained using RTI for 
network communication instead of UDP in Virtual 
CIC application was acceptable.  Most of the CPU 
time spent from the time ownership request was made 
until the request response was received was spent by 
the Virtual CIC application.  It w as measured that the 
time RTI takes to respond to ownership requests was 
about 15 milliseconds, compared to an average of 200 



millisecond response time for the user to know 
whether he or she gets the ownership to an entity.  
Therefore, RTI would perform well within acceptable 
levels for this task even for more federates than tested.  
A response time of 500 milliseconds is considered 
acceptable for most Virtual CIC users. 
 
The experience in developing an HLA compliant 
application using the RTI libraries deve loped by 
DMSO was relatively painless.  The Application 
Program Interface (API) that was provided by the RTI 
library was sufficient in general.  However we did 
experience difficulty in a couple of areas.  
 
Firstly, there are three schemes provided by RTI to  
exchange ownership. According to one of the three 
schemes, a federate can request ownership for a set of 
attributes.  The federate owning those attributes gets a 
callback from RTI to release them.  When that federate 
responds to RTI by listing all the att ributes it is willing 
to release, RTI lets the requesting federate what it is 
allowed to own.  The problem is that even when the 
federate that owned the attributes know for sure that it 
is not willing to give up the ownership to any of these 
attributes, there is no way it can respond to the request 
as such.  The consequence of this is that the requesting 
federate never hears anything from the RTI whether it 
will get the ownership for those attributes or not.  This 
can easily be fixed by letting the owning f ederate to 
respond to RTI by giving an empty list of attributes as 
the attributes the requesting federate can own.  
 
Second difficulty experienced in using RTI was that 
the part of the RTI code needed for interfacing with 
Virtual CIC appeared to have interf ered with other 
software libraries Virtual CIC was using. Even when 
none of the RTI services were being used, simply 
linking the RTI libraries into a very simple IRIS 
Performer (a commercial VR development tool from 
SGI) [8] application created system crashes in a 
reproducible manner when a system call is made from 
the C++ application, e.g. 
system("sfplay bell.aiff").  This is certainly 
an unacceptable behavior. Without the source code for 
the local RTI component that the applications link 
with, it is virtu ally impossible to identify the source of 
the problem.  However, through the use of a debugger, 
it appears that IRIS Performer and RTI are using 
conflicting signals that causes the system to crash.  
One possible reason for this to occur is that maybe RTI 
is using global data that gets initialized and in the 
process uses signals. It is not yet clear what the cause 
of such flaky behavior is.  
 

There is also a need for better documentation of RTI 
software.  For example, the “RTI.rid” file that comes 
with the RTI distribution contains a slew of 
parameters that can be modified to achieve different 
behavior, and possibly better or worse performance.  
These parameters are not explained in any 
documentation.  
 
RTI distribution includes an electronic version of the 
programmer's manual in Adobe Acrobat ® format [9].  
This is very useful to programmers.  It would be even 
more useful however if the document included a 
hyperlinked index, so that navigation is faster and 
easier. 
 
5. Acknowledgements 

The authors thank the Navy Modeling and Simulation 
Office (OPNAV N6M) for sponsoring this study. In 
particular, we thank Mr. James Weatherly and Mr. 
George Phillip s of N6M and Dr. Susan Numrich of NRL 
for their valuable input  and review of the work.  In 
addition, JADS staff has been helpful with their input 
early in the project.  
 
6. References 
 
[1] HLA World Wide Web site: http://hla.dmso.mil.  

[2] D. L. Wright, C. J. Harris, J.W. Black: “High 
Level Architecture Runtime Infrastructure Test 
Report,” JADS Joint Test & Evaluation, 11104 
Menual N.E., Albuquerque, NM, August 1998.  

[3] JADS World Wide Web site: 
http://www.jads.abq.com/html/jads/JADS.htm.  

[4]  Grady Booch, Ivar Jacobson and James 
Rumbaugh; The Unified Modeling Language User 
Guide, Addison Wesley, 1998. 

[5] High Level Architecture Run-Time Infrastructure 
Programmer’s Guide, RTI 1.3 Version 6, DMSO, 
March 12, 1999. 

[6] High Level Architecture Interface Specification, 
Version 1.3, DMSO, April 2, 1998.  

[7] N. Kuijpers, J. Lukkien, B. Huijbrechts, M. 
Brassé: “Applying Data Distribution Management 
and Ownership Management Services of the HLA 
Interface Specification,” Proc. 1999 Fall 
Simulation Interoperability Workshop, 99F -SIW-
023, Vol. 1, pp. 154–161, Orlando, FL, September 
1999. 



[8] IRIS Performer Programmer's Guide, Document 
Number 007-1680-040, SGI, Mountain View, CA, 
1997. 

[9] Adobe Acrobat, 
http://www.adobe.com/prodindex/acrobat/main.ht
ml. 

Author Biographies 
 
DR. SULEYMAN GULEYUPOGLU is a Research 
Scientist of ITT Industries, Inc., working at the U.S. 
Naval Research Laboratory as an on-site contractor. 
He received his Ph.D. degree in Engineering Science 
and Mechanics from The University of Alabama, 
Tuscaloosa, AL. His current research interests include 
distributed simulations, virtual reality, collaborative 
engineering, and expert systems. 
 
PATRICK MELODY is a software developer of ITT 
Industries, Inc., working at the U.S. Naval Research 
Laboratory as an on-site contractor. He received his 
M.S. degree in Computer Science from North Carolina 
State University.  Current interests include virtual 
reality and reliable software construction.  
 
HENRY NG is the Head of the Visualization and 
Computing Systems Section of the Advanced 
Information Technology branch in Naval Research 
Laboratory. He has been actively involved in 
simulation and modeling over twenty years. Prior to 
joining NRL, he was the Head of the Simulation and 
Modeling branch of the Warfare Analysis department 
of NSWCDD in White Oak, Maryland . He was the 
principle architect of a large scale sea, sp ace, and land 
battle force level simulation model known as MARS ( 
Multi-warfare Assessment and Research System). In 
addition, Henry was a member of the Technical 
Support Team to support DMSO Architecture 
Management Group  (AMG) to develop High Level 
Architecture during 1994 -1996  


